
J. Engg. Math., 16,271-293 (1982). 0022-0083/82/03/0271-23 $00.20/0 271 
© Martinus Nijhoff Publishers, The Hague. Printed in the Netherlands 

On the motion of a weakly buoyant 
heat source near an interface 

T. MILOH and Y. YAHALOM 

School of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel. 

(Received August 1, 1981 and in revised form December 1, 1981) 

SUMMARY 

An asymptotic solution to the problem of a slightly buoyant flow, induced by the motion of a submerged 
point heat source which is governed by the Oseen-Boussinesq approximation, is presented. Two cases are 
discussed in particular, one which involves a motion of the heat source beneath a free surface and the other 
near a rigid boundary. The thermal boundary conditions on these two interfaces are assumed to be that of 
the mixed Canchy type. Closed-form expressions are obtained for the temperature field as well as for the 
velocity and the pressure distributions induced in the fluid. The general solution thus obtained is illustrated 
by calculating both the thermal and kinematic signatures on the free surface for some particular cases. 

1. Introduction 

In this paper we consider the steady motion of  a point heat source below and parallel to an 

interface - either a plane boundary or a free surface - in a medium which is otherwise at rest. 

The fluid is assumed to be incompressible and the resulting fluid motion, which is solely due to 

buoyant  effects, to be laminar. The point heat source is moving with a constant speed U at a 

constant depth y = h below the interface. We def'me a Cartesian coordinate system moving with 

the source velocity U along the x-axis, with the z-axis parallel to the interface and the y-axis is 

directed vertically downward such that the location of  the source is given by (0, h, 0). The rate 

o f  heat production by the source, denoted by Q, is assumed to be small and thus the thermal 

plume can be termed as a weakly buoyant  plume. In this sense the problem may be considered 

as a perturbation on a homogeneous fluid medium at rest. As a result of  the temperature field 

and the fluid motion induced by the moving heat source, the interface will be deflected in the 

case of  a free-surface boundary. In the case of  a rigid plane boundary a pressure distribution 

will be induced on this interface. 

It is the purpose of  this study to analyse the fluid motion and the temperature field induced 

by the buoyant  source as well as the shape of  the deflected free surface and the pressure distri- 

bution on the plane boundary, as a function of  the heat-source output,  its velocity and sub- 

mergence depth. The motivation for this study is the search for a theoretical model which will 

determine the characteristics of  submerged pollutants in the ocean in the presence of  an am- 

bient current, by  their thermal or kinematic signatures on the free surface (or on the ocean 

floor in the case of  negative buoyancy). 

The mixed-convection problem of  a weakly buoyant  plume in the presence of  an ambient 

current has been previously studied by Afzal, Wesseling and Wood. Afzal [1] and Wood [7] 
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considered a stationary two-dimensional line heat source placed in an oncoming vertical stream, 
whereas Wessellng [6] analyzed the buoyant plume induced by a point source in a free stream 
which is directed at an arbitary angle with respect to the vertical. It should be emphasized, 
however, that these mixed-convection studies consider the case of a heat source immersed in an 
infinite expanse of fluid, where no other boundaries or interfaces are present. The present study, 
on the other hand, considers the influence of both a rigid wall or a free surface on the plume 
characteristics. 

2. Mathematical formulation 

The equations governing steady convective laminar flow, when heating by viscous dissipation is 
neglected and when the density is a slightly varying function of temperature, are the Boussinesq 
equations [6, 7] : 

V - u = O ,  

p(u. V)u = -Vp-pg' oj +uV=u, O) 

pep (U" V)O ---- EV20 

where p is the fluid density,P the fluid pressure, u the velocity vector, k the thermal conduc- 
tivity, # the dynamic viscosity, cp the specific heat for constant pressure, 0 the difference 
between the plume and the ambient temperature, ~ the thermal expansion coefficient and j 
denotes a unit vector in the y-direction. 

Let U, the velocity of the flow at upstream infinity, be the velocity scale, h be the length 
scale (assuming the system has only one length scale), pU 2 be the reference pressure and AO = 

Q/pUh2cp be the reference temperature difference. Denoting dimensionless quantities by the 
same symbols as the corresponding dimensional quantities, the dimensionless form of (I) is  

V . u = O ,  

1 
(u" V)u = - V p - e O j  +2~V2u ,  

1 
(u. v)o = V20. 

2Xo 

(2) 

Here X = Uh/(2v) denotes the Reynolds number, o = blcp/k is the Prandtl number and e = 
~gO[~U3h2cp), which is a measure of the ratio between buoyancy and inertial forces, is con- 
sidered a small parameter in the following analysis. This parameter may be also expressed as e = 

A0/Fr, where Fr = U2/(,gh) is the Froude number. 
The boundary conditions at infinity are 

u = l , v = w = p = O = O  at x2 +y2 +z 2~ '*  (3) 
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where u, v, w, are the three components of the velocity vector u. 
At y = 0 we have either a free surface or a rigid plane boundary. For a rigid plane the bound- 

ary condition is the no-slip condition: 

u = l ,  v = w = 0 on y = 0 (4) 

For a free surface the boundary conditions require that both the tangential and the vertical 
components of the shear stress tensor should vanish. The linearized version of this free-surface 
boundary condition (see for example Wehausen and Laltone [5] ) is 

au + av a w +  av 
a -ay --°  

1 1 av 
= 0 

on y = 0 (5) 

where y = ~/(x, z) denotes the free-surface elevation. Another boundary condition, stating that 

the free surface is also a stream surface, is 

an an (6) 

There is an additional boundary condition for the temperature distribution on the interface 
which is taken here to be of a general Cauchy type, 

aO 
- -  + b O  = 0 at  y = ~/ ( 7 )  
an 

for the free surface with n denoting the direction of the normal and 

a0 
- + b O  = 0 at  y = 0 ( 8 )  ay 

for the rigid boundary. 
The limiting cases of  b = 0 and b -~ -- oo correspond to adiabatic and isothermal boundary 

conditions respectively. Equation (2) together with the boundary conditions (3)-(8)  complete 
the formulation of the present problem. 

A perturbation solution for small e for this system of coupled non-linear equations will next 
be presented. The analysis is valid for a wide range of  the parameters h and U, provided that the 
heat-rate production of the point source is small; hence, it is assumed that ~ A0 ~ 1 or 

ua 2 (9) 
pcp 

The solution of the non-linear field equation (2) is sought in the far-field at a distance from the 
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heat source which is larger than the difffusive length [6, 7] for which the Oseen approximation 
may be employed in the linearization of the Navier-Stokes equations. 

Hence, for a finite yet small 5, the following asymptotic expansions are assumed for the 
velocity, pressure, temperature and for the free-surface elevation, 

u = l + e u l + e 2 u 2  + . . . .  V = eV 1 -1-•2V2 - I - . . . , W  = e"W1 q - e 2 W 2  q- . . . .  (10) 

p = epl  + e2p2 + . . . .  0 = 00 -~ eO 1 4- e202  - F . . .  , ~  = e-'r/1 q- e2~/2 -t- . . . .  

Substituting the above in (2) yields the following first-order system of linear equations for 

ul ,Pl  and 0o, (ul = ul (ul , v l ,  wl))  

V ' u l  = O, (11) 

aUl 1 
- Vpl + ~ V 2 u l - - j O o ,  (12)  

ax LA 

00___o _ ~ V20o ' (13) 
ax 2Xo 

subjected to the following boundary conditions at y = 0: 

00_o + bO o = O, 
ay (14) 

_ _  _ _  avl 0ul avl awl jr _ = 0, (15) 
a y + a x  - ay az 

1 1 a v ~ =  0,  (16 )  pl  

- v l .  (17 )  
ax 

Equations (14)-(17) hold for a free surface, whereas for a rigid boundary we have 

u, = v, = w, = 0 at y = 0. (18) 

These boundary conditions are supplemented by the infinity condition stating that 

0o = p l  = 7/1 = ul = vl = wl = 0 as x 2 + y 2 + z  2 ~  o. (19) 

It is clear that 0o does not depend on the perturbed velocity field and, hence, may be 
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determined independently. The solution for 0o, on the other hand, is essential in the solution 
for ux. We shall refer to the system (11)-(13) as the Oseen-Boussinesq equations. 

3. The solution of  the Oseen-Boussinesq equations in a medium with a free surface. 

An analytic solution of the system (11)-(13) together with the set of boundary conditions 
(14)-(17) and (19) will be presented next for the temperature, velocity and pressure fields as 
well as for the free-surface displacement. For each one of these, the solution is expressed as a 
sum of a singular and a regular part. The singular part is essentially identical with the solution 
to the problem of a moving heat source in an infinite expanse of fluid (Wesseling [6] ). The 
regular part is added in order to accommodate for the additional boundary conditions at the 
free surface. 

3.1 The  solution fo r  the zeroth-order temperature field. 

Let the zeroth-order temperature field be given b y  

Oo = Oo,s + Oo,r (20) 

where Oo,s is the singular part which also accounts for the fact that the origin is not at the 
source, 

•o - xo(Rl  -x )  (21) 
2rrRx e 

where 

= x 2 + ( y - - l )  2 + z  2 (22) 

This solution satisfies the field equation for the temperature field (13) and vanishes at large 
distances from the source. 
The regular part, in addition to satisfying 

V 2 0 o  r - 2;ko OO__o,r = O, (23) 
• ax 

must also satisfy the interface boundary conditions 

+ boo r = --  + boo 8 at y = O. (24) 
a y  , , 

It was found convenient for the present case to first solve the problem in the Fourier-transform 
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plane, where the double Fourier transform is def'med by 

O o(a,y ,~)  = 1/2n ~ ' O o ( x , y , z )  e -lax-faz dxdz 

with inverse 0 o given by 

Oo(x,y,z) = 1/21t ff'fio(,~,y,B)e '-x÷ ~ ,  dad,. 

In the transformed plane (23) becomes 

d20o.r 
@2 720"o,r = 0 

(25) 

(26) 

(27) 

with an equivalent boundary condition 

dOo,r 

dy 
--+bOo,r =--~dO-~°*+bO-o. | / ~  aty =0 

~ 
(28) 

where 

72 = a2 + ~2 +2lake.  (29) 

The solution of equation (27) which vanishes for y -* - ~o is 

O-o.r = F(a, ~) e -~ Y, (30) 

since the real part of 3' is always positive for real a, ~. The Fourier transform of the singular part 
(21) is thus 

ko -II-~ty (31) 

which, when substituted in (28) and (29), yields 

~,a 7 + b  
F(a,~) = 2n3, 7 -- b e- ~ (32) 

The resulting expression for the zeroth-order temperature field is thus 

Xo {~_~e_7,o(R _=) l ~ f ; . 1 7 + b  (t+y)~+l(~x+~Z)dod/]} (33) Oo(X,y,z) = ~ + - - - -  e- 
7 7 - - b  
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which may be also expressed as 

[ l e - x O ( R  ~-x) + 1 e_XO(R ~ _ x ) _  ~o 
Oo(X,y,z) = 

2b f ' l e -  b(t- r ) -  xo(R; -,,) dt't 
g tR2 ) 

where 

R2 = (x2 + t2 + z2) 1/2, t = l + y ,  

R~ = (x 2 + t  '2 + z 2 )  ~/2 

0 4 )  

(35) 

The above representation has been obtained by utilizing the double Fourier transform (31) of 
the singular part of (33). A similar expression has been derived by Van Roosbroeck [4] :in 
studying transport properties of semi-conductors by employing the Riemann-Stieltjes integral 
representation to the corresponding time-dependent partial differential equation for the current 
carrier transport. The solution for the time-dependent Green's function of the diffusion equa- 
tion for a semi-infinite space with radiation at the boundary, as given in Carslaw and Jaeger [2], 
differs from the present solution in the sense that the former does not consider convection 
effects. 

For the two limiting cases, namely an isothermal interface (b ~ -- co) and an adiabatic inter- 
face (b = 0), equation (34) renders 

Xo f 1 _ T- 1 e_Xa(n ~ _x) I Oo(x,y ,z)  = Z--|-~-e Xo(R,-x)  
zff (.KI R2 ) 

(36) 

Here, the upper sign corresponds to the isothermal (b ~ - 0 0 )  case and the lower sign to the 
adiabatic (b = 0) case. 

The numerical solution of equation (34) is depicted in Figures 1 -4  and describes the tem- 

perature field pattern as viewed in the direction of the z-axis for two typical planes z = 0 and 
z = 1. When plotted as a function of x[h, the zeroth-order temperature field is identical over 
most of the domain of interest, except for values of I xl < X and y 2 + z 2 < 1. 

Another interesting feature of this solution is that by imposing an isothermal boundary con- 

dition on the interface, the temperature field indicates a downward inclination of the plume 

(Figures 1 and 2). The only way to trace such a plume on the interface is by its kinematic 
signature, namely the deflection of a free surface or by the pressure disturbance induced on a 
rigid boundary. 

In the non4sothermal case (b :/: -- ~)  the thermal signature on the interface can be also cal- 
culated and is shown in Figures 5 and 6. 
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Figure  1. I s o t h e r m s  o f  0 o for  the  i s o t h e r m a l  case (b -~ - -  oo) and  7~ ~ 10 p ro j ec t ed  on  t he  z = 0 plane.  
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Figure  2. I s o t h e r m s  o f  0 o for  the  i s o t h e r m a l  case (b --, - -  = )  and  ~, ~ 10 p ro jec t ed  on  the  z = 1.0 plane.  
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Figure 3. Isotherms of  0 o for the adiabatic case (b =0)  and 7, ~ 10 projected on the z = 0 plane. 
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Figure 6. The surface thermal signature of 0 o for a r4ixed temperature boumimy condition b = 1.0 and for 
7~=1. 

3.2 The solution for the velocity and pressure fields 

Following Lamb [3] and Wemeling [6] it is advantageous in the present problem to express the 

perturbed velocity vector as 

[a~b, ~)#, + ~,, ~zl ) (37) u, = V~, +j~,,;e,(ux,v,,w,) =., ~,~x ' ay  
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where $1 and ~kl are some functions of (x ,y , z )  to be determined. 
Substituting (37) into (12) yields the following equations for St and $t : 

a~01 
V2¢1  - -2X ~ = 2XO o,  (38) 

act  
V2¢1 - - 2 ~  "~x = 2 k p l .  (39) 

Taking the divergence of (12) and using (11) and (37) gives 

aOo 
V 2 p l  = - -  _ _  , ay (40) 

V2¢t  = _ a~1 ay (41) 

Let 

~kl = #1 , ,  + ~0t.r, (42) 

where again ~l,s denotes the singular part of ~kt Which, following Wesseling [6], is given by 

ha 
2 . ( a -  1) 

{E [ X(R t -- x)] --E [ Xa(R 1 -- x)] } (43) 

for a 4= 1 and 

= --  ,r2-- e -  x ( R ~ - x )  (44) 

for a =  1. 
Here E denotes the exponential integral defined by 

E(x) = f ;  t -1 e- tat .  (45) 

The regular part of (42), ffl, r, satisfies 

2 ~,~kl,r = 2X0o r .  V ~1, r - -2~ itx "!b (46) 

Taking the Fourier transform of (46) and substituting (30) for 0o, r, one gets 
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d2~bs'r - - 7 ~ s , r  - °~2 7 + b  e _ , O + ,  ) (47) 
dy 2 +n'y 7 - - b  ' 

where 

"rl = a2 +.82 + 2ia),. (48) 

The solution of (47) is readily obtained as 

~ l ' r (a 'Y '~)  ---- --2-~ (o - -1 )Ta  7 - - b  [e - ' / ( s+~)- -e -~ 'O+ ' ) ]  +G(a'/])e-'V'Y ' (49) 

where G(a,/~) is an unknown function to be determined from the boundary conditions on the 
free surface. 

The Fourier transform of the singular solution (43) is 

Xo { i " - " ] }  . (50) 
"~1"(ct'Y'{3) - ~ (o-- ' l )a7 [e-~'l ' -~' l--e-~" 

Substitution of (43) and (50) into (42) yields, for o #= 1, 

Xo { i [7+b (e_,yt1.~,)_e_ 
~s (a,y,/3) - 2 .  (o --1)tx'}' [ ~ - -  b 

• } 

and, for o = 1, 

71 (l+Y))] + 

(51) 

~ (~ ,y ,  ~) = _ _ 

G(ct,[])e -'y' Y}. 

~ -  _ (I - -y)  e -'f, + (I + y )  + 

To fred the first-order pressure distribution, we decompose Ps into, 

(52) 

Pl = Pl.a + Pl.r,  (53) 

where the singular part is given by 

_,_1 { _e_+_+, 1 Ps,, = 4-Rs (RI --x) 1 
(54) 

Taking the Fourier transform of equation (40) and using (30), we get 
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d2ffl, r 3,2opt.r Xo 7 + b  e_.rO+ ~ ) (55) 
dy 2 = 21r 7 -  b ' 

where 

72o = a 2+132. (56) 

The solution of (55) can be expressed as 

~ - l . , ( , ~ , y , ~ )  = _ _ Xo{ i 7 + b  [e-'rO+Y)--e-VoO+y)] +H(ol,[3)e -'roa'} (57) 

where the unknown function H(a,/3) has to be determined from the boundary conditions on 
the interface. 

The Fourier transform of the singular part ofpt ,  (54), is 

i {e_~ll_ ,l_e_~oll_~l } ~ - l . , ( , ~ , y , ~ )  = ~ (58) 

and, hence, P-1 (a, y,/3), the sum of (57) and (58), is given by 

~__.e[ l.....~" [ 27r [2Xoa ( ) ] 
ff1(a,y,{$) = e-~/ Jl-yJ_ e-'roll-~,l_ 7 + b .e-V(t+ ~O _ e-'roO+ ~)" _ 

7 - - b  

H(a, 8) e-% y }. (59) 

% 

Finally, to determine $t which is governed by (41), again let 

¢1 = ¢1,! + ;¢1,r, (60) 

where the singular part of ¢1, for o :/: 1, is given by [6], 

o--1 
Rt --x 

3'--1 [ o.._..o__ e_XCR _x) 1 e_7,o¢R _x) - 
4 F ( ~ =  l) {Rl  - -x  R,  - -x  

+ XoE p,o(R, -x)] -XoE [7,(R1 -x)] } 
(61) 

and y l {  } 
~1., - 4¢r(Ra --x) e-7"CR'-x) -- 1 for o = 1. (62) 

The Fourier transform of the regular part of (39) together with (57), gives 
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d2~l,r 
ay 2 h2e{ 2~oa 7+bT_b [e-'r(l+Y)--e-'r°(t+:')] +H(a'#)e-'r°:'} 

(63) 

which yields 

)~a f 1 7 + b  
~l,r(a,y,/3) = -- 2rt [2~,o(o--1)a 2 7--b  

[e -v(t+~') + (o - -  1) e -vo°+3') ] + 

/ H(a,/3) e -'to 3' + I(ot,/3) e -~', Y)} . 
n, 

(64) 

The regular part of St can be also obtained from equations (41) and (49) as 

~t,,(a,y, ~) = ;ka { 1 7 + b  7~ 7 +b  
2)~o(o--l)ot' 7----b e- ' r ( l ' ' ) - -2h(o- -1)o t27  7--b  

i e-,r,  O+~, ) _  71 G(a,~)e-,r, :, + j(ot,[j)e-,roy ~ . 
2c~ ] 

(65) 

Comparing the resultihg two solutions for ~1, r, namely (64) and (65), we conclude that 

7t i  71 7 +b  
I(a,#) = ~ G(a,#) 2X(a-1)a2~ 7 - / ,  e-~, ,  

i H(a,/3) 1 "y'+ b e- 7o 
d ( a , # )  = ~- 2boa 2 ../_----~ 

(66) 

Substituting (66) into (64) and (65) together with the Fourier transform ~1,,, given by 

;~a 1 
~t., (a,y.~) = -- 2-~ 2ha(o'-- 1)a27 [ 'Ye-q ' l l -y l - -  °'Yte'V' I1-~'1 + 

(e  - 1)Te -'to I1-~,l ] ,  (67) 

we derive the final expression for ~t : 

2--~X°{{ 1 .[7+b['re- 'r(1*~) (t*,) -~, (ot, y,#) = -- 2Xo(o-- 1)a27 / 7---~ - e y ,  e-V' 

/ + ( o -  1)Te -'yo(I÷~) I -- ['Ye-~t~-Yt--eTt e - ~  t t -~ l+  ( o - -  1)Te -'~o tl-Y'J 1 -- 

i7,2Xo G(a'~)e-'r"+ -iH(a'~)e-'r°'}} (68) 
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which is valid when o =~ 1, and 

~*(~'Y'~) = - 2--~ 7 - - b  e-Vt°+Y) 1 + iaX + y -  

e-~ll-yl[l +io~X (l + iaX ( l l - y l -  1))] 
71 

~-~ G(a,#)e-~,~ + n(a,(3)e-~oY for o = 1. (69) 

3.3 Determination of the unknown functions G(a, ~ ] and H(a, f3 } 

The unknown functions G(a, fl) and H(ol,/3), which appear in the solution for ~1 ,if1, and ~1, 
will next be evaluated from the boundary conditions on the interface. In the case of a free sur- 
face, the velocity vector (37) is substituted into the boundary condition (15), which renders 

2 "2"Z'.. + ~ ,  = 0 at y = 0. (70) oy 

In addition, differentiation of (16) with respect to x and employing (17) yields 

apx 1 1 ~2V 1 
--ax + Frr vl ~ ayax-- = 0 at y = 0. (71) 

Furthermore, (37) and (70) imply that vl = ~ ~kl a t y  = 0 and hence (71) becomes 

apx+ 1 1 a2~k _ 
ax -~-r qjl 27~ ax~y 0 at y = 0. (72) 

Taking the Fourier transforms of (70) and (72), we obtain 

d~l +-~1 = 0 at O, (73) 2 -~y  y =  

1 d~'l ~_ ~ 5 1 _ p _ 1  = 0 at y = O .  (74) 
2X dy 2Fr~ 

Next, substitution of  ¢ a, ~k I and P-I from equations (68),  (59) and (51),  evaluated at y = 0, 
into equations (73) and (74), yields the following expressions for the two unknown functions 
G(o~, t~) and H(,~, t~): 
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G(a, #) - 
4 k [  a_~2 F r + 7o 

D [ ~ o - -  1)~----b) 
[ e-'r _ e-'r , ] + ib%Fr 

2k(o -- 1) (7 -- b)7 

[7e-~- -Tte -% ] + 
iFr 

k o ( o - 1 ) ( 7 - b )  
[72e -'r -- oT~e -'r, + (o-- 1)77o e-~o ] + 

ibT°Fr [e - ~ ' - e  -~o ]/  (75) 
xo(~ - b) ) 

1 / a  2 FrT, --4it~k 
H(o~,#) = D [ ( - e - - - 0 i ~  [e-~ ' - -e-%] + 

b~,Fr 
(o -- 1) (7 --  b)7 

[Te-~--Tte-~t]  + 

iFr (71 - 2ikot) - e-'ro]~ (76) ),o(o -- 1 " ~ :  b')[72e-~ -- °7~ e-% + (o -- 1)7%e -~'°] + 2botFr o( ' t -  b) [e- s j 

where 

D = 2iA(ot2Fr - -2%) + FrotTtTo (77) 

because of (17), (37), (51) and (73). 
Finally, the Fourier transform of the free-surface displacement is given by 

i ~, = ko{ 1 _e_~,] i } 
~"(a'~) = 2or -- 2"~ (e--1)c,2(7--b) [e-~' + ~ a ( : , , ~ )  

at y = O. (78) 

The solution in the physical plane, for the velocity and the pressure fields induced by a weakly 
buoyant plume near a free surface, is thus 

~,  (x,y, z)' 

¢1 (x, y, z) 

pt(x,y ,z)  

[ ~1 (n', y, ~) ' 

'= ~ . (~ ,y ,~)  

(~ ,y ,~)  

lax + ~#z dad~ (79) 

where ~ , ( a ,  y, 8), ~(cx, y, 8) and Pl (a, y, 8) are given by (51), (68) and (59) respectively, 
with (75), (76) for G(a, [0 and H(% {J). The solution for the free-surface displacement is 

n1.(x,z) = 1;;_- ~i (~,, ~)e "*'÷ " ,  dad,, (8o) 

where ~-1 (a, ~) is given by equation (78). 
Rather than solving for the most general case, which involves the numerical solution of the 
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integrals in (79)-(80), we will present in the sequel the solution for some limiting cases, such as 
the solution for the free-surface disturbance (80) for an isothermal free-surface boundary 
condition. 

4. The solution of  the Oseen-Bousalnesq equations in a half-space bounded by a solid 
boundary 

In this section we present the solution for the system of equations (11)-(13) with the boundary 
conditions (14), (19) and the 'no.slip' condition (18) at the rigid boundary. 

The solution for the zeroth-order temperature field Oo ( x , y ,  z) is given by (34) and that for 
the velocity and pressure fields by (51), (59), (76) and (68), but with different values for 
G(a, ~]) and H(a, ~). 

The unknown functions G(a,  a} and H(a, a) for the case of a rigid wall, are obtained by im- 
posing the 'no.slip' condition at the rigid interface (18), 

~- - + S t  = 0 at y = 0. (81) 
ax ~z ay 

Fourier inversion of (81) leads to 

~'1 = a~---A + ~1 = 0 at y = O. (82) 4y 

Substitution of (82) into (68) and (5 i)yields 

G(a,p) = ~ [~2e -v - 0 7 2 e  -7, +(o--1)77oe-Vol (~y__b) a(0.__l)0r-- 

2ibTo ['ye- v _ o71 e -  vl + (o -- 1)Te- 3'o ] + 
o(o - 1)a~(, - b) 

4~, 
V t ] } (83)  (o --1) (7 -- b) [ e - V - e -  ) ' 

~(~,~) = 
/b 

) ,a(a - 1 ) a v ( v  - b) 
[Te-V--aTte  -vl + ( a - -  1)Te -vo ] + 

I { i71 
D-~ )~a(a-- 1)a(v--b)  [72e-V - - °7 ]e -V '  + (o-- 1)7o7e -'re ] + 

ib7% 
)ko(o-- I)¢x7(7 --b) [Te-V-- °7te- vt + (o -- l)Te -re ] + 
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271 
(o -- 1) (~  -- b) 

[e-  s -- e - -t, ] } ,  (84) 

where 

DI = 7o(71--7o) .  (85) 

Substitution of (83)-(85) into (51), (59) and (68) renders the f'mal linearized solution for the 
velocity and the pressure spatial distribution in the ease of a weakly buoyant heat source 
moving parallel and below to a rigid wall. 

5. Asymptotic solution for the isothermal free-surface disturbance in the case of  a small 
Froude number 

For an isothermal free surface (b -, - oo), equations (78) and (75) yield 

~°Fr%{ l [Te-'r--Tte-'r,] + l  [e-'r--e-'ro]} . (86) 

Under the assumption of small Froude number and ~A0 ~ Fr ,~ 1, equation (77) is thus ap- 
proximated by 

Fr /Fr 
~ 4X7o t-O(FrZ), (87) 

and ~1 (a,/3) is given by 

_ ~iFr° t 1 l ) + l [ e - ~ / - - e - 7 o ] }  O(Fr2).  (88) r/t (a,/3) = [27(0--  [ T e - 7  - - T i e - 7 '  ] + 

The solution for rh (x, z) is obtained from (80) as 

oFr f f "  i 
71 (x, z) = (27r) 2 J J- - 4~7(o - 1) [Te- ~ - 71 e-  ~, ] e i~x. ~z  dad~3 + 

i F r  f f -  1 _ e _ ~ o l e ~ X ÷ i ~  . (21r) 2J J- - , 2a  [e-~ dad~3 + O(Fr 2). (89) 

The evaluation of the first integral on the fight-hand side of (89) is carried out by noting that 
this integrand is in fact the inverse Fourier transform of a~l,a/ay evaluated at y = 0 (50). 
Thus, differentiation of (43) with respect to y and letting y = O, yields 
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lfj  ® [Te -'r --71e -'r, ] dad[3 = 
i e iOZx + 

_ . i -d~-  7 

1 {  I Ro(1 ~ - -x )  e -~ ' tn° -  00 _e-XO~1%- x) , (90) 

where 

R2o = x 2 + z  2 + 1. (91) 

The second integral on the right-hand side of (89) is evaluated by first differentiating it with 
respect to x, using the following identities: 

2 r r ' - . .  [~yy[ R- ,--o 
(92) 

and 

(93) 

where 

R z = x 2 +(1 _ y ) 2  + z  2 

Thus, the f'mal solution of (89) is obtained as 

Fr {2(oa_~_ [e_MRo_x) kO(Ro_X) 
r l l (x ,z )  = 41rRo(Ro--x)  1) - -e-  ] + 

[1 --e  -x°CRo- x)] } + O ( F r  2) (94) 

which is the asymptotic solution for an isothermal free surface in the limit of small Froude 
numbers and vanishingly small buoyancy terms. 

The analytical solution given in equation (94) is depicted in Figure 7 which represents typical 
spatial deflection of the free surface as viewed from a point (5 Xo, - 50, 0.5). Note that the 
vertical coordinate is largely distorted with respect to the horizontal coordinates. A more 
quantitative view of the free-surface elevation in the isothermal case is given in Figure 8. The 
first-order free-surface elevation rh (divided by the factor Fr) is here plotted versusx/Xo. Again, 
for X > 500 one obtains a 'similarity' - like solution when ~71 is plotted againstx/Xoin the sense 
that the solution does not vary with X and o. For small values ofX(X = 1, X = 10), on the other 
hand, the dependence on x[ Xo is observed only in the region x] Xo ,~ 1. (See Figure 8.). 
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Figure 7. A typical spatial deflection ~)i (x, z) of  the  free surface in the  isothermal case as viewed f rom the 
point  x = 5, y = - -  50,  z = 0.5 for h = I0 ,  o = 7 and Fr ,( 1. 
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Figure 8. The  free surface deflection (kinematic signatt~e) ) h / F r  for Fr  ( I ,  ~, = 1 and ?L ;) 10 at z = 0. 
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6. Discussions and conclusions 

An asymptotic solution is constructed in this paper for a laminar weakly buoyant plume induced 
by a moving point source below an interface. An analytic solution for the temperature field, as 

well as for the buoyancy-induced velocity and pressure fields, are derived in the Fourier- 
transform plane. This solution is obtained for a general Cauchy-type boundary condition for 
the temperature on the interface, and predicts both the kinematic and the thermal signatures on 
it for a free surface or a solid boundary. In contrast with the transform plane, in which a com- 

plete analytic solution for this problem is presented, the solution in the physical plane is pre- 
sented for only two relatively simple, yet practical cases: first, the general solution for the 

thermal signature on a free surface (y = 0), given by (34), is plotted in Figures (5)-(6)  for both 
adiabatic and mixed thermal boundary conditions. Then the isothermal case, where by deft- 

nition there is no thermal signature, is considered next and the kinematic signature, namely 
the free-surface elevation, is calculated and plotted in Figure 8. The calculations for this case 

were performed for small values of the Froude number, such that Fr = O (e). 
In order to examine the practical range of the parameters U and h, for which the above 

solution is valid, the lines of constant Froude numbers were plotted for 0 ~< U~< 1.5 (m/s), 

0 ~ h ~ 25(m) and for v = l0 -2 (cm2/s). It is shown in Figures 9 and 10 that the Froude num- 
ber based on the upstream velocity and the submergence depth is relatively small over most of 
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Figure 9. The range of parameters U ~ 10 crn/s and h ~ 100 cm corresponding to constant values of Froude 
number Fr, and • (calculated for Q = 5 cal/sec injected at the source). 
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the parameters range. On the other hand, the Reynolds number, based on the upstream velocity 
and the submergence depth, ranges from ?~ = 1 for U = O (10 -3 m/s) and finite values of h, 
to k = 106 for finite values of U and h. Thus, the expression for the non-dimensional surface 
elevation given in (94), is the appropriate solution for those values of U and h. In order to find 
the physical dimension of e (which appears to be very small), it is necessary to fred the actual 
value of the small parameter. Typical values of e for heat-rate injection of 5 cal/s are plotted in 

Figure 9. 

E 

1.0 

0.5 

I 

I 
I 
I 

Fr =10"1 

),=5" I05 

\ 
\ 
\ 
\ 

k 
k 

\ 
\ 

'% 
\ 

\ 
% 

% 
\ 

\ 

%. 

.= I0 "z 

"~ '~. . . ,k  = 5. i0 6 

Fig~e 10. 
k. 

'3" . . . .  - - r  ,,--- - ~ r -  ,, , I [ . . . . .  I 

5 I0 15 20 25 
h(m) 

The range of parameters U < 1,8 m/s and h < 25 m corresponding to constant values of Fr and 

An interesting result found in this case is that both the non-dimensional kinematic and the 
thermal signatures, as well as the temperature field, are all independent of X (namely on U and 
h) for k ~ 500. For small values of k = 0  (I0) the same result is valid over most of the fluid 
domain except in the immediate vicinity of the source. 

One should also notice the asymmetry of the thermal and kinematic signatures with respect 
to the x-axis. These signatures are largely stretched in the x-direction even for small values of U, 

namely for k = 0  (1). The analysis presented in this paper may be found useful in estimating 
the free-surface signatures (thermal and kinematic) of a submerged point heat source in the 
presence of an ambient uniform current. 
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